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X, On the Resistance to Torsion of Certain Forms of Shafting, with Specinl Reference
to the Hffect of Keyways.

By L. N. G. Fox, M. A., Research Student of King's College, Cambridge, Fellow of
Unversity College, London, 1851 Exhibition Science Research Scholar.

Communzcated by Professor M. J. M. Hinw, F.R.S.
Received June 1,——Read June 15, 1899,

§ 1. Object and Methods of the Investigation.

Ture object of the present paper is to obtain solutions of the problem of torsion for
cylinders whose cross-sections are bounded by confocal conics. It is mainly an
extension of DE SamntT-VENANT'S investigations, and is based upon his general
equations of torsion.

The method employed depends upon the use of conjugate functions ¢ and %, such
that & = const. represents confocal ellipses and % == const. confocal hyperbolas.

The use of conjugate functions for the torsion problem has been suggested by
Tromson and Tarr (‘ Natural Philosophy’), by Creescu (‘ Theorie der Elasticitit
fester Korper, §§ 33-35), and by Boussmvesq (‘Journal de Mathématiques,’
pp. 177-186, Série 1II., vol. 6). Crmmsca has used such elliptic coordinates to
solve the torsion problem for hollow cylinders bounded by confocal ellipses, and
DE SAINT-VENANT has applied conjugate functions to the same problem for shafts
whose sections are sectors of circles ; curvilinear coordinates have also been employed
by Mr. H. M. MacDonarp (¢ On the Torsional Strength of Hollow Shafts,” ¢ Proc.
Camb. Phil. Soc.,” vol. 8, 1893, p. 62, ¢t seq.), but T am not aware that the actual
solution has yet been obtained for sections bounded by both ellipses and hyperbolas.

The work proceeds on lines analogous to those developed by SAINT-VENANT
himself, in his solution of the problem of torsion for the cylinder of rectangular
cross-section. The straing and stresses are expressible in terms of infinite series
involving circular and hyperbolic functions.

The boundaries of the section are given by constant values of ¢ and 5. The values
of € are taken to be 4+ a.

The conditions from which the unknown quantity w (the shift parallel to the axis)
is determined are

dPw/dae® + dPw/dy* = 0
29.12.99.
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310 MR. L. N. G. FILON ON THE RESISTANCE TO

throughout the section ; and
dw/dn 4 (mx — ly) v == 0

along the boundary, where dn = an element of the outwards normal to the boundary,
7 is the angle of torsion per unit length, and /, m are the direction-cosines of di.
Now in the present case

dn = 4 dé % (c\/J)

- z oy /
J =20 <'—;> _;) / d (67 7?)
at the boundary where & = const., and

dn = -4 dn X (c «/{T)

where

at the boundary where n = const., the sign being so determined that dn is positive.
By adding suitable terms to w, we can reduce one or other of the boundary

conditions to the form
dw,/dn = 0,
where
w = w, - suitable terms.

»
/ 5:_@> — 0.

CZE/ E=ta

Suppose we make

Expanding now w, in the form of a series,

' 2 + 1 o+ 1

=P . 2n + 1 . 2n+ 1w
wy = % A,sinh =7y -+ K)l sin ~~»—JI§,

n=0 2 ! 2ot

the differential equation and the first boundary condition are identically satisfied.
When this value is substituted in the second boundary condition, we get an

&
L

equation expressing a given function of € in a series of sines of odd multiples of 5
@8

between the limits + o and — a.

But such an expression can be definitely obtained by a method analogous to that
for Fourier’s series. Comparing coefficients, we obtain relations which determine
completely all the constants in the expression of w,.

w is then known. The shears and torsion moment are then deduced by differen-

tiation and a double integration.

§ 2. Summary of the Results.

The cross-sections which are dealt with in the present paper are of very great
generality, and they include as special cases many of the cross-sections which SarNt-
VENANT has worked out, for instance the rectangle and the sector of a circle.

The first section of which I treat is that bounded by an ellipse and two confocal
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TORSION OF CERTAIN FORMS OF SHAFTING. 311

hyperbolas. Although the analysis is worked out for the case where the two hyper-
bolic segments are not symmetrical, I have not given any numerical examples of this
case, as the sections obtained by taking two hyperbolas curved the same way, as in
fig. 1, do not correspond to any intersecting practical case: the section is too broad
at the ends and too narrow at the bend to be any fair representation of the angle
iron.

The section (fig. 2) bounded by an ellipse and the two branches of a confocal
hyperbola is, on the other hand, an approximate representation of a well-known
section, much used in engineering practice, the rail section.

This section I have worked out for various values of the eccentricity of the
ellipse and of the angle between the asymptotes of the hyperbola.

The four sections in fig. 2, where this angle is 120° give the best representation
of the rail section.

The numerical results are tabulated so as to show the ratio of the torsional rigidity
of this section to that of the circular section of the same area, and also the same ratio
for the maximum stress.

The ratio of these two ratios gives us a kind of measure of the usefulness or
“efficiency ” of the section.

In the case of the sections of fig. 2 I have investigated at length the position of
the faul-points, or points of maximum strain and stress, the maximum strain, in the
case of torsion, being coincident with the maximum stress. It is found that for the
two smaller ellipses the maximum stress occurs at the point B where the section
is thinnest. For the two larger ellipses the maximum stress occurs at points
F, F, F, F, symmetrically distributed round the contour, and lying on the broad
sides of the section. The critical section, when these two cases pass into one another,
can be calculated and is shown as ¢g, g¢ in fig. 2. In figs. 2-5 the corresponding
points belonging to the different sections are distinguished by suffixes.

The changes in the stresses are shown by the curves in fig. 9, (p. 340) in which the
abscissa represents the quantity e whose hyperbolic cosine and sine are proportional
to the major and minor axes of the ellipse respectively, and in which the ordinates
represent the stresses at A, B, F, divided by the maximum stress of the circular
section of equal area. The curves are in certain parts only roughly drawn, but they
suffice to show the manner in which the stresses vary. It is seen that the stress at
B separates from the maximum stress after the critical value & = 1225, and gradually
diminishes, compared with the stresses at A and F.

This result might have been expected from the investigations of DE SAINT VENANT
upon certain sections bounded by curves of the fourth degree. These investigations
appear, however, not to have been sufficiently noticed. TaomsoN and Tarr, in their
‘ Natural Philosophy, and BoussiNesq, in his researches on torsion (‘Journal de
Mathématiques, Série 1L, vol. 16, p. 200), both conclude that the fail-points are at
the points of the cross-section nearest to the centre, and BoussiNEsQ even gives an
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312 MR. L. N. G. FILON ON THF RESISTANCE TO

apparently general proof of this proposition. Iis proof, however, is subject to
certain restrictions which I point out, and which prevent it from being applied to the
sections I am dealing with.

The sections are sensibly less useful than the circular section, their torsional rigidity

AIPN e 2
Fig. 1. Iig. 3.
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being always diminished and the maximum stress very often increased. This remark,
T may add, applies to all the sections dealt with in this paper.

This usefulness or efficiency decreases as the neck of the section becomes more
narrow, as, indeed, might have been anticipated.

Other sections worked out are those corresponding to angles between the
asymptotes of 90° (fig. 8), 60° (fig. 4), and 0° (fig. 5); in the latter case the sections
degenerate into ordinary elliptic sections with two straight slits, or indefinitely thin
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keyways, cut inte them along the major axis, as far as the foci. The stress at the
foci, however, is then theoretically infinite.

It is interesting to see how. as we make the bend round the foei sharper, the
valies of a, for which the two fail-points break up into four, become larger and larger,

Vig. 5. Fig. 7.

Y

Py
/\
I \
A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

e
a7 G

e ——

—

S o

@) = Iig. 6. Iig. 8.

e |

E 8 until, when the angle between the asymptotes of the hyperbolas is less than 73° the
~w greatest stress always ocours at the neck of the section.

The limiting case of such sections, when the angle between the asymptotes is very
small and the eccentricity of the ellipse nearly unity, the distance between the foci
being very great, gives us the rectangle.

I then pass on to the section bounded by one ellipse and one confocal hyperhela.
In the limiting case when the focl coincide, we obtain the sector of a circle.
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814 MR. L. N. ¢, FILON ON THE RESISTANCE TO

Of this I have worked out numerically three cases, in each case taking two ellipses

(1.) The semi-ellipse (fig. 6).

(2.) The ellipse with a keyway cut into it of the shape of a rectangular confocal
hyperbola (fig. 7). o

(3.) The ellipse with a single slit cut into it (fig. 8).

The most striking of the results is in reference to the reduction of the torsional
rigidity ot the ellipse in case (3). This reduction of rigidity decreases rapidly as the
depth of the notch decreases.

The rigidity, which is reduced by as much as 23 per cent. when the depth of the
keyway is as great as '6 (semi-major axis), falls only about 1 per cent. when this depth
is "12 (semi-major axis).

Possibly this may throw some light on the fact that the effect of cutting such slits
into the material does not always give in practice the reduction in the torsional
rigidity which should have been expected from Saint-VENANT'S results for the circle.
Clearly the depth of the keyway is a factor of the very first importance, and keyways
of moderate depth will produce a comparatively small effect on the torsional rigidity.

It is also shown that the effect of cutting two equal and opposite slits is practically
equal, in the two cases which I have caleulated (namely, a=#/6 and «==/2), to twice
the effect of a single slit.

Tt seems, therefore, that the study of these sections brings to light several
nteresting facts in the theory of elasticity, and will well vepay the {rouble involved
in dealing with the long and somewhat tedious algebra and arithmetic which lead to
these results.

§ 3. Statement of Notation, dc.

In what follows the axis of z will be taken parallel to the generators, the axes of w
and ¥ in one of the terminal cross-sections.

The origin, however, will not necessarily be at the centroid of the cross-section.

The shifts of any point of the material parallel to the axis will be denoted as usual
by u, v, w, and for the stresses I shall use the notation of TopHUNTER and PEARSON'S
“ History of Elasticity,’ s denoting the stress, parallel to », ucross a plane element
perpendicular to .

Then if, following SAINT-VENANT, we suppose the terminal cross-section z = 0 to
be fixed (that is to say, u = 0, v == 0, but w 5= 0), then if 7 be the angle of torsion
per unit length,

v = T, e ¥ - 2 5 §

If w be the modulus of rigidity,

:7;; dw " o dw .
; = [ZJ + T, ';L” pomey 217{; - TY s e . . (Z),

and all the other stresses are zero.
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w is then determined from the body stress equation

daz (Zg//zf
A + dy — 0,

or

d*w d?w
;Z—wg-p-@;_o..........(s),

which holds at all points of the cross-section, and from the surface-stress equation

S R :
I (xz) + m (yz) = 0,
that is,
e
R S e | €
o Y) (+)
at the boundary, where di is an element of the outwards normal, and (/, m) are its
direction-cosines.

The above conditions allow us to determine w uniquely. They are associated with
the condition that the parallel to the generators through the origin remains fixed.
If, however, we take any other parallel to the generators through the point («, b) to
remain fixed, then

w=—17(y —0)z, v=r1(r — a)z,
vo_de v
w T dy T(l CL), w  dw —T(y - b)’

and the equation at the boundary becomes

o + (me — ly)r — 7 (am — Ib) = 0.

dn

Now, if instead of w we write

w=w + 7 (ay — bx),

then
. — . —~
VE dw’ @z dw!
S zm e e T e — Tl
w o dy ’ “ dz Y

and the equations to determine w’ are the same which we had before for w. It follows
that the stresses in the cylinder are unaltered, whatever be the parallel to the
generators about which it is twisted, the effect of the change being merely to intro-
duce a term 7 (ay — bx) into w, which corresponds to a rigid rotation about an axis
joining (a, b) to the origin.

It follows from this that in dealing with stresses due to torsion we may take our
origin wherever it is most convenient.

282
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§ 4. Analytical Work for Sections Bounded by One Elliptic and Two
Iyperbolic Ares.

Consider now the transformation
x = ¢ cosh £siny,
y = ¢ sinh & cos .

1f we allow 5 to vary between 8 and £, and & between -+ « and - a, the point
(, y) will move within the space contained between the ellipse

2

o
o ¥ .
9 9 + 9o By == l H
e cosh® o ¢ sinh® o

and the two hyperbolas

2 2 2

a , a? i

- - =1 T T T e =
Asin*B 2eos* B ’ ¢sin® B teos* B

Using then the coordinates (&, n) instead ot (z, y) we find that our equations for

become
% d*w B <n<B o
wo e —— = 0 for 3 N
g dn* — < £ < a
Also
1 . . ,
EZ——; 4 L7¢® sin 29 =0, when §¢= 4 «, B <n< B
/ "
(/w o e , “ ( )
o Lr?sinh 26 = 0, when 5= Borf, -—a< &< “ |
i

Write now
. Sinh 2 sin )n

el ——— 1_.
w = 1w, — trct ol T
Then
dun/dé = 0, E= F . B<yg<p . . . . . (D)
due, s cos 28 i .
i $7¢* sinh 25(1 -+ - oo h‘)a) =0, =20, oL EL a] “
).
div, cos 28 . o J’
P Lr¢* sinh 2§< ool ?x> 0, n=242, o< <L o
Let us assume
S+ 4 1 T+ 1
wy = ( A, sinh .J."f’l‘f’f (n — €) + B, cosh =+ ;r“(n —¢) ) sin n—;“ mE,
= 0 k. L
where e =4 (8 + 8).

Then conditions (5) and (3') are identically satisfied. Let us now determine the
coefficients A and B so that (6) shall also be satisfied.
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We have to expand sinh 2¢ between the limits + « in a series of sines as follows :

mé Fn+ 1
sinh 2€ = a, sm— + o, sin 20 -|- ... +a,sn f‘;:;‘, TE + ...

The coefficients a,, ¢, . . . @, . .. are found in the usual way

)}L 16« cosh 24 -
o (20 + 1) + 16227

1 41
t, = j sinh 2&sin ;4—35 dé = (—1
o — /2

TN
S . . . . 2n41 .
also we have, substituting in (6), equating coefficients of sin n-g 'WE, and writing
. : 9 £
B — B = 2y,
S+ 1 Sn4 1 s 28
<h ._’L J_fy B sinh 20+ 1oy s cos AN
A,; CO + 0 sin 9 (c)n -+ ]_) C(;gh 9“/
S+t 1 Sn 41 / 28
2 + lary . 24 lmy T , cos 28"
\, cosh ——="% _ B, sin = 2 -
A, % oS n + Do ( bt osh 2w/
whence, solving for A, and B,, we find
’/\\‘
167¢% sech 2“9}’;‘}&
= et (Y ,
A, @+ 1)71-( ) - 7 On + 1) 4 164 ,(cosh 2a 4 cos 2ecos 2y) . . (7),
o+ 1
. cosech M
B, = Lbretat (— 1) sin 2e sin 2 (8)
T T @ 4 ) w<9n+1)+1(’“ Yoo B
whence
h 2 2
b= — 1 SRLZEEN By

cosh 2a

o+ 1 5
. m N+
sinh oM — (9 — €)sin —

+167c%* {cosh 2a+cos 2e cos 2y} 3 ( 1)

]‘— /\]
(20 -+ 1) [ (204 1)+ 1647] cosh “—’3-*;4 ™y
S+ 1 O+
2 cosh 2 2+ T (n—e)sin n -{2—“1_71'_5
— 167¢%’ sin 2y sin 2¢ = (—1)" e (9)
n=0 ; 20 + l7rfy
(20 + 1) [7* (20 + 1)* + 16a%] sinh ~——5— 5
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Having obtained w, the shears are easily deduced by simple differentiation

&z —_— <smh é‘-‘ 5]11 7} + cosh é‘ cOos 7] ) - TC sinh & cos /] l

po ool E FoL (10),
z 1

R 5 (co&h & cos 17 5 — ginh &gin 7 - g > + 7¢ cosh & sin 4 jl

7
where J =-cosh® & cos®  + sinh® £ sin® 7.

These again may be put into the slightly different form

o~

% 1 dav)\ . ;

T (smh Esin g Ié + cosh & cos n —- 3) — rc sinh &cosn (1 -k sech 2a)
” L ((oosh £ cos oy sinh &€ sh iy -+ 7¢ cosh €si 1 h 2
= (e os . — sinh €5 — osh € s — sech 2n).
W =l g inh & sin 9 i ¢ cosh € sin g ( sech 2n)

The next quantity which we require is the moment of the shears

= {(.Lg//; -— y;\d) dix dy
wrct (B . . o -
= [ dy ( d€[(cosh 2§ — cos 2n9) — sech 2a (1 — cosh 2€ cos 29)] X J
L 4 B’ o o
-+ /i‘":fj' ) j dé [: sin 279 —- (—i_ sinh ZE:]
2 1, n

— pret [ nj’ d€ (cosh 4¢ — cos 4n — sech 2a {cosh 2¢& + cos 29}
+ sech 2a {cosh 4€ cos 29 4 cosh 2& cos 4n})

uc (B i T 2 e ) P
+ _? j‘ﬁ/CZY’ Sin 2’)” [:1{,’1J—a — !‘;- j‘ﬁﬂ(lé—’ S]n_]‘] 25 [/N;IJ .

g

,UzTC
= e ech 2
8 4= g )1 - (sinh 4e cos 2e sin 2y + sinh 2a cos 4e sin 4y)

,'y sinh 4a — a sin 4y cos 4e — sech 2a (2y sinh 2a 4 2« sin 2y cos Ze) I
\
i

P

16 12 h 9 s 2¢ cos 2 B 9%—!—1
+ 2 iutc'e? (cosh 2a 4 cos 2e cos ')2—\\ j sinh ™" .’”(7} _ e) sin ’7d7)
w0 m (20 + 1) [7*(2n + 1)* + 164%] cosh an-;‘—_ 417#)/
= 16urcta® sin 2 sin 2 (A 3/“\ 1
- % R b e } cosh ~ n+ T(n — €) sin 2 dy
w(2n + 1) [7*(2n + 1)* + 1647] sinh - »ﬁi}jr’y
In+1
« 16p7cte? (cosh 2+ cos 2e cos 29) (—1)" tanh ’@‘%;‘w . Dntinmk
B R TR TR J_ sin =557 sinb 26 .
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“uy sinh 4¢ — a sin 4y cos 4e — sech 2a {2y sinh 20 + 2a sin 2y cos 2¢}
WTE _
= g sech 22 . . . S
8 14 b {sinh 4a sin 2y cos 2¢ 4 sinh 2a sin 4y cos 4e} -
2 1
- tanh = -Lf.) T
s 2 ‘
oo (20 4 1) [ (20 + 1) + 1622

e
Tpey

21 |

coth <~~7}/~t&z)
L VEQ ?11('c’~.‘,5 2 —
256uTc'a (sin 2e sin 2y) EO m Cn + 1) [ n 4 1) £ 162

— 256urc'a’ (cosh 2a 4 cos 2e cos 2y)°

. s 1
4 4,8 ¢ N ¢ o 5 | J .
+ 64prce® sin 2y (cosh 2a éos 2€ + cos 2y cos 4e)n20 [+ D + 162]

But the series Z

— . can be summed in finite terms,* and it is found
0[(‘)z+])7r+]6 i 8 t 15 found

;0 be
1
5124

(20 sech? 200 — tanh 2a) -

Substituting this value in the expression for the torsion moment we lind

M= ('y sinh de — asin 4y cos de) (I — sech® 2a)

— o sin dy cos de sech” 2o — 2o sech Za sin 2y cos e
+ sech 2a [sinh 2a sin 2y] (cosh 2 cos 2e 4 cos 2y cos 4e)

— sin 2y (2a sech? 2o — tanh 2a) (cosh 2a cos 2 + cos 2y cos 4€)

— the two series terms.

Whence, after some obvious reductions

M tanh? 2 . ‘
1 = 8 o (‘y S]]lh 40(, —_ oL S111. 4,)/ COS -16)
TG

— 1 8in 2y (cosh 2a cos 2e 4 cos 2y cos 4e) (20 sech” 22 — tanh 2)

— 256at (cosh 2a 4+ cos 2e cos 2 Y =
P ( - "I" i “7) o 7T'( 7 + ])”0“_ O'IL - 1 2,”.-:':,

—_ 2 4 o 2 : 3 5 " I a S —
560’ (sin 2y sin 2e)? 150 TRy [16a P (L1).

* See Crrysrar’s ¢ Algebra,” vol. 2 (Dilferentinting the result marked (8) on p. 338).
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5320 MR. L. N. G. FILON ON THE RESISTANCE TO

§ 5. Alternateve Solution for the same Sections.

There exists also an alternative solution ; it is genervally of a less convenient form
than the one last given. It may, however, be useful in certain cases.
Return now to the boundary conditions (4') and write

sinh 28 sin 2 (9 — ¢)
cos 2ry

w = w, + +rc*

we then obtain

s, .
%l% =0 when =8 o =8, —a<é<+ux
and
ey . cosh Ze . :
e S ) D 1 8 Z - =
7 4 $re? {sm I 5, “sin 2 (y e)} 0,
when

E=oF o f <np<f.
The latter condition may be written

dw,

(cosh 2e + cos 2y cos 2e)

+ Lrc* [Sin 2(n — € + cos 2 (y — c) sin Ze-‘ = 0.

cos 2y

Now let us write
wy, =y ooy

where
&Iw, | ey d*os, Fwy
g T =0 Gty =0
and
de/dy =0, p—e= 4y dw,/dn = 0, n —e= 4.
But
dws, cosh 2a + cos 2y cos Je s
LI — ) (COELEE T 008 Sy £08 = =0 . . . . (12
T + $rctsin 2 (g )( tos 9y > 0 (12)
’/U) 5 . . e ‘ g o
g + drcfeos2(p —e€)sinZe=0 . . . . . . . . . (13)
when ’
E=da and —y<n—c<+y.
Assume
D) 9 Y (9 —
w o=z Y Ap sinh tn ;_lm; il n+17r(n ~)
w0 ;J(y ‘J’Y

@, = Bf + s B, sinh "2 n’”’QL:fj

=1

we have now to express between limits - y

Qard , vl
cos 20 = b, -+ b, cos + b, cos ::; + ...+ Db, cos ”g + ...
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) . Futind
sin 260 = «, sin = + €, SIN ;r~ 4+ ...+ a,smn ?LT g
2y 2y 2
We find
g dysin 2y . 16y cos 2y
— wl LT T — o -
o= (=) e Ty = ) G e — 1y
. 1
by = -, sin 2y
0 Py ¥

Substituting in (12) and (13) and equating coefficients we obtain

P
A 167¢*y* (cosh 2a + cos 2y cos 2e) (—-1) soch e
o @0+ Do [0 + 12a® — 1697] 0 2y
27¢*y? sin Je sin 29 ( — 1)* T
B, = R 7(=1) sech 7,
nar (nwPm? — 4y%)
o, .
By= — 1 7¢* gin 2y 8in 2e,
whence
Lsinh 2Esin 2 (p — e
w = irc* d : (=9
€oS 2y
W sinh "’ E s (=)
. | =
4 167c*y*sin 2esin 2y | — ~2- + 2, (— 1)

64 ' O (dnPm® — 164?) eoshﬁzﬁ‘ |

— 167¢** (cosh 204 cos 2y cos 2e)

‘) —
sinh 217,—}- 1 7r§ 2n + In+im (n—e)

= b) 2
X |3 (=1)y = Yo Co L (1a)

(20+1) 7 [(2n+ 1w~ 1697 cosh e

It may be noted here that y may vary between 0 and #/2. It follows that y may
have the value 7/2, and in that case the denominator of the first term under the first
S becomes zero. The same happens to the denominator of the first term of the
second = when y has the value /4. Further, in this latter case the first term in w
also becomes infinite, so that the expression (14) is apparently no longer applicable.

It is easy to see, however, that the terms, which are apparently infinite in (14),
exactly cancel each other. 1If we write y = #/4 — {, where { is small, simplify and
proceed to the limit, we find that when y = #/4 the two infinite terms reduce to :

47c¢*sinh 2€sin 2 (y — €) Li:;z% — i — 4;:—‘ tanh 20{]
+ " [Ecosh 2£sin 2 (n — ) + (3 — &) cos 2 (n — &) sinh 2¢] . . . (15),

which is.finite.
VOL. OXCIIL~—A. 2o
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322 MRE. L. N. G, FILON ON THE RESISTANCE TO

In like manner when y = #/2 the limit of w ig casily evaluated.

For all other values of vy, e and & the series in (14) are absolutely convergent as
they stand, for all points (&, n) within or on the boundary of the section. The same
holds of all the series in the last paragraph for all values of a, vy, e

The expression for w being given, the shears and torsion moment are obtained as
before

. A “ o Sl I R (e o
= ’—‘; L/dv; [ _Slf (cosh 4€& — cos 47) + H;, 5 X [wJ%sm 2ndy — 'M;— j_ijBlsmh 26 dE.

The integrations are all easily effected, and we tind

ok

M= Hi; (ysinh 4e — a sin 4y cos 4e)

puret (asin 2 4 o sinh 2x cos 2¢) wret (sinh da sin 2y + sinh 24 sin 4y cos 2e¢)

_|_ 1 _11(') ............. -

cos 2y cos 2y

:L:*JJ 1
20 (2n+ 127 — 1692

=+ G4prc'y’ (cosh 2a 4 cos 2y cos 2¢) sinh 22

‘) 4 ..
, tanh (20 T(y])w"
— 256 Tyt C Sl 2 ‘¢ 08 ¢ 2 o *'——ﬂv»~«--~«—~--iif,,,:,_,,,_,_ -

wrc'y' (cosh 22 4 cos 2y cos 2e) %0 o+ D [ G £ 1) — 16577

)

- panh 7
. o . N o
- 20 Syt (s Zesin 2 S -
256prcty ( ¢ Y) ;E, 2nar (dnPar? — 16y?) + 1024+°
. . ner ) Dy see? 2y — tan 2y .
et bering that : ‘ = . v iy, and ve-
Remembering t 750 On 1 1y — Tog F13y , reducing, and re

grouping the terms, we find finally

AL 1 (o sin 4y — ysinh 4a) tan® 2y

prct

+ 1+ (cosh 22 + cos 2y cos 2¢) (2y sec” 2y — tan 2y) sinh 2e

+ go;— sin 4y sin® 2e (2y = tan 2y)
;),, T
_ tanh 1_{{?}]_{{‘
= Z'Y

e 256 (cosh 20 -k cos ¢ S92 S e
256y* (cosh 2 -+ cos 2y cos 2¢) O T A [ Cn £ 1 — 1697

Naro
=% tanh ——

e DR OA (G D it 2N S v 7 Cn
256y" (sin 2e sin 2y) ,‘i] S (T Gy (16).

We may test the correctness of the expressions (11) and (16) by remembering that
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TORSION OF CERTAIN FORMS OF SHAFTING. 323

when we make the distance ¢ between the foci very great, and y and a very small,
the section reduces to a rectangle, of which the half' sides @ and b are given by

o = Co. COS €, b= cycose

The first and last terms in (16) are ultimately of negligible order, when multiplied
by ¢*.
The second and third reduce to

§y%0 (1 4 cos 2¢) — § y’a (1 — cos 4e) = §y*a (3 + 4 cos 2¢ -+ cos 4e)

= 15 % cos* e
The fourth term gives

2n -1 17m
tanh —

_ 4’:l=3:‘ )Z
1024 (y cos ¢) EO ECT N

Hence
I M -{\171'2&
_M 16 a “4: )5 ngm tanh T
/J/'TZ)“. - 3 b o ) oo (27’[,—'— 1),-) . . vy

which is one of SAINT-VENANTS expressions for the torsion moment of a rectangle
of sides 2a, 20,

If we treat in a similar manner expression (11), neglecting terms of order greater
than four in e, y, we get the other expression for the torsion moment of the
rectangle.

§ 6. Recapitulation of Results for the Symmetrical Cuse.

By far the most important case we have to deal with is that in which the sections
are symmetrical.

We have then 8’ = — B, and therefore e = 0, y = .
Both solutions then simplify a good deal, and we have the equivalent expressions

w = — § 7¢" sinh 2€ sin 27 sech 2a

In+lmy . Intl
(—1)"sinh nE AT Gin 7@20‘75-

+ 167¢*a* (cosh 2o + cos 28) s 2a — —
=0
(20 + 1) [(2n + 1)7 + 1647 COoh

= } 7¢” sinh 2£ sin 27 sec 28

Irg . Za+l
. (—1)"sinh on tﬁwf sin %;,8 G
— 167¢*8* (cosh 2a + cos 28) 2 . (17).

B (204 1) [(2n+ 1)m* ~ 168%] cosh ?17%812-—“

2T 2
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e - Lo 20 ? (eosh 2z + cos 28)
r¢ sinh € cos ) (1 4 sech 20) + 327ca (cosh 28 1 cos 29)
(o AN . Tudlmy . ZatiwE
— 1)* [ sinh &sin n —= -+ cosh £ cos n— Sinfy S —
1 t 1 : ) in] -
5¢ - _ dg dn | o Za
n=0 5
a (20 4 D) [(20 + 1)7* 4+ 164*] cosh Zﬂjg_,lf'f@
L
. . . . , (cosh 2« + cos 23)
i S LE & > - S z — ) o N
= = 7¢sinh £cos n (1 — sec 28) — 327¢B (cosh 9F 1 cos 2n)
TN ST
) % 9
(~ 1y {ginh Esing i + cosh Ecosq l~z—> sinh =" T 1mg sin < }N 1’”'7
® dE dn, 2B 26 )
X 3 - : o (18).
=0 9, .1
(20 + D [@n + 1P — 1687 cosh 217
_ : 928
v cginm (1 — Soreat (€O 2% + c03 28
L = cosh Esin g (1 — sech 20) + 327ca <00Sh 5 1 cos 2
SN
(— 1)” I < sinh £ sin 7(;1”_‘) sinh 2@7{77 sin a4 1mE
o (=1 <com§eosnd5 sinb g siny ) g 5=
' m (2 + 1)[m* (20 + 1) + 1622 cosh =" ;fl‘i@

— G _aon.@e[Cosh Za + cos 28
= rocosh Esin (1 + see 26) — Farcf (cosh 2E + cos 29/

. e TN
" Ew (— 1)y <cosh Ecosy ;l(é — ginh £ sin nf7(?l7> sinh 2n :i; 317“5 sin 2n ;Blml
X

T
n=o 2n 4 lma

(20 + 1) [7* (20 4+ 1)* — 168*] cosh = g

. (19).

V] {e 2 * -
Mo mnl%}ﬁ (Bsinh 4o — @ sin 43)

IU,'T'C h
— L sin 28 (cosh 2a 4 cos 28) (2a sech® 2a — tanh 2a)
' ST
2 ]
" fanh = -;G}?T@
S Gt ¢ 3 2 T .
2560 (cosh 20 + cos 28) ] ﬁz() w20 3 D164 + T 1o
= _ana & (= sin 48 — Bsinh 4a)

4+ 1 sinh 24 (cosh 2 + cos 23) (28 sec” 28 — tan 23)

PN
2n + lmra
= tanh —— 2 B'f

 orpp 28) S - e - = (20)

2568 (cosh 2o 4 cos 23) ) 50 o Gn D) [on & 1Pm® = 1657 (20)
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§ 7. Importance of the Maximum Stress.. Application to Rupture.

I now pass on to the numerical determination of the torsion moment and stresses,
and in particular of the maximum stress.

SAINT-VENANT has shown, in his memolr on torsion,® that if we assume an
ellipsoidal distribution of limating streteh (z.e., stretch such that, when it is exceeded,
the elasticity of the material is impaired), then, in the case of a shaft under torsion,
we have at any point

o5 = V(o ko)

where o, o,. are the shearing strains in the planes yz, @z respectively, o is the value

of the limiting shearing strain of the material, and s/s is the maximum value of the
ratio of the stretch in any direction to the limiting stretch in that direction.

The condition that there should be no failure of elasticity is thevefore that s/s < 1.
Therefore
oy + of, < o,
. o~ o~
and, since o, = yz/p, 0., = wz/p,

A-) /\‘) 27T
A+ Yy < W

The points where this condition will first be broken are called by SaiNt-VENANT
the faul-points (““ points dangereux”). They are clearly the points where w4 s
a maximum, 4.c., where the resultant stress across an element of the section is a
maximum, Hence the importance of determining the points of maximum stress.
Strictly speaking, the latter give us no certain information as to where, or how,
rupture will actually take place: all that they tell us is where linear elasticity begins
to fail.  But they will, in general, give us a useful clue to the regions where breaking
may be expected to occur, and, in the absence of any definite theory of plastic
deformation and rupture, we must be content to be guided by the results of elastic
theory.

I'have worked out numerically the values of the stresses at the points & = 4+ a,
n=0and £=10,9p= 4 B These give the four points in which the axes meet the
boundary of the cross-section. I have denoted them by A and B respectively. The
boundary is convex at A and concave at B From considerations of symmetry it
follows that A and B must be points of maximum or minimum stress, and the stress
being zero both at the corners and at the centre, it will often happen that they are
points of mawimuin stress. When this is the case those of the points A and B,
where the stress is numerically greater, will give us the fuil-points. But there is an
obvious exception, when there are two points of maximum stress on either side of the
mid-point, and this is a case which, we shall see, does occur in these sections.

5 ’ . 4 - . o
* ¢ Mémoires des Savants Ktrangers,” 1855, vol. xiv., pp. 278-288. See also TODHUNTER and PEARSON,
Hist. Elast.,” vol. ii., part i., pp. 7-10.
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§ 8. Methods of Culculation.

The symmetrical sections selected for numerical treatment are those for which
B = /6, w/4, /3, w/2 and « == #/6, =/3, w/2, and 2x/3, sixteen in all. These
sections are shown in figs. 2 to 5. 8 of cowrse is the complement of the half angle
between the asymptotes, and all sections having the same B have been collected in
one figure. '

The numerical caloulamons were generally based upon the formule of § 4, as they
did not re qmre modification for the value #/4 of 8. In many cases, however, the
alternative series were used also, in order to test the results obtained.

The caleulation of the terms of the series in the exp1 ession for the torsion moment

T

2n -+ lma -4 ‘” +
gg  Wasso gl eat that tanh = 3

equal to unity. The remainder of the series, namely,

9 o .
was carried on until * could be taken sensibly

» 1
% (21 + 1) 7 (20 + 1) + 1622

wasg then obtained by expanding the denominator by the binomial theorem, thus

- 1 51 * 1
i e € AT S R 3 (] 2)2 e
2 @1y T2 (16“) > en gy T3 (162 §w9(2n+1)9

The successive terms were easily calculated from the values of E
Curysrar’s ¢ Algebra,” vol. 2, chapter XXX, § 15.

The stresses at A and B were calculated from formule (18) and (19). If S,, S,
denote these stresses, we find easily

e given in

soch) 2 2n +\',l,7r,8
Sa feosh 2a 4 cos 28475 2;” -
= r¢ tanh 2a cosh a 4 8rca / ol ) om0 4 1P 4 1642
, S+ dmre
— 1y*tanh = -
. ) cosh 2a + cos 28\ "7 °°( 2B
= ] — 1) — 87¢ . 21
re sinh a (sec 28 ) TC,8< i ) 01y 168 (21).
I+ 171'[3
g — 1)* tanh 2t Imps
Sg . } <(,()S]1 200 + cos 2B\ "2 °°( 2
B re s | — 2 .
L = sin 8 (1 — sech 2a) 4 8rca \ s B )R a1y 16a
/“‘\\
sec 21 F 1
cosh 22 -+ cos 23 2,8 .
= 7¢ tan - e L (22)
7¢ tan 28 cos B — 87¢cB < cos B > IlEO O 31— 168 (22)

The first expressions for S,, S, were used in each case as the main basis of the
calculation, but the results were partly verified by means of the second expressions,
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With regard to the accuracy obtained, 1 may say that, where 1 was able to verify,
I found the values of the stresses correct to five, and sometimes to six, significant
figures. In the values of the torsion moment the first five figures generally agreed,
so that, on the whole, the results may be considered correct to the number of figures
given.

The first series for S, and the second series for S, are very slowly convergent
indeed. The method adopted in dealing with them was the following :

The series

Hn=00

/—\
! (— 1)» tanh — ;‘i |
0 P (271, + 1)2 + 1602

was broken up into two series

, ., 21 1+ 17TB
N=a ) (____ l)i( ) N'——:-:o (— 1) < 9% )

o

Somt (Zn 4+ 1)+ 162 T 20 - (20 1P + 1622

The latter series converges rapidly, and was easily calculated. The former was
caleulated to an even number of terms, and the remainder obtained by means of the
Euler-Maclaurin sum-formula, thus :

" (=1
N Y SR TRl
Now

L é — ‘...;_,;1‘_,4,,,.“,_,‘
m (e + 1F + 1628 2 (dw — 1P 4 165

*Ms

B, du, B, du,
2! dx 4! da? +o

Su, = C + [u da — Ju, +

where B, = 1, B, = 3, &ec.
Let me write
pt = (4o + 1) 7* + 1647,

4o 1
f = tan™! - =

T Ty T

Then
J’u dop = — ¢  dw, (—=1)sin n + 19 (dmr)a !
A 16w i - pn+1 da
whence
om0 1 Bisin20 (bm) B sindg (bry

lﬁmr_.é—pz_ 2 p2 " da + 4  pt  4da

Putz=cw, =0, p= o'o,

§u,,,, = (,
therefore,
Sy =0 Lo Bosin20 _N>,_!?;z,_._zz sl oy
T 16ar 2p* 2 p 'y 4 a Pt
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1

P

In like manner if », =

’ Y et D47 \ 3 . '
S SIS A P <7’> su;fﬁ L7t 4 ...

These series converge fairly rapidly if @ is at all large, and thus the remainder can
be obtained.

Even with the help of all these devices the labour of calculating the moment and
stress for the sixteen sections was considerable.

The values of the hyperbolic functions were taken from GuDERMANN'S Tables
(‘ Theorie der Potenzial oder Cyklisch-hyperbolischen Functionen’), and from
GramsuER'S and Nrumax’s Tables of the Exponential Function (‘ Cambridge Phil.
Trans.,” vol. 13).

§9. Values of the Torsional Rigidity.

The first quantity calculated was the torsion moment. The values found are
shown in the table below.

Tasrw of M/prc'.

1 i B = /6. /4. E /3. : /2.
“= =6 1710 3116 4055 4676
w= =3 | 8764 20317 32205 ASILT

| a= 72 | 3-8798 9:4161 16442 L 299912
o =273 | 22:898 54-824 96411 194-18

It is interesting to compare this table with the table of values of the torsion
moment, as given by DE SAINT-VENANTs empirical formula, viz.,

pr AL

torsion moment = - -
40 1

K
where A = area, I = moment of inertia of section about its centroid.
Calling M’ this value of the torsion moment, we have

M ] (,8 sinh 2« -+ « sin 283)

Rj

1 —

. . 2
W Bsinh de — asin 48

whence we obtain the following set of values
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TasLE of M'/urc'.

“ B = /6. /4. /3 72
w= /6 1835 3266 4152 4723
o= =3 9914 2:3759 38023 6:0121
v= 2 1°3368 12:195 23260 51500
w=2mf3 | 23280 71826 15296 42095

; |

If we compare this with the preceding table, we see at once that although the
agreement is fairly good for the more compact sections, SAINT-VENANT'S empirical
formula utterly breaks down for deeply indented sections. That, indeed, might have
been expected, since it takes no account of slits cut into the material. One rather
noticeable feature in the comparison is that Samr-VeENANT'S formula always gives
too high a value for the torsional rigidity.

§ 10. Comparison with the Circle. * Relative” Torsional Rigidity.

In order, however, to compare properly the efficiency or usefulness of these various
sections, it was found advisable to refer each of them to some kind of standard, or
unit. The most obvious standard, as I thought, was the circular section, this being
the one whose torsion obeys the most simple laws. I determined, therefore, to com-
pare every section with the circular section of the same area. v

Now if # be the radius of this circular section, its torsion moment M, = $muri,
and the maximum stress S, = pu7rr.  To find 7, we have the equation :

mr® = area of given section = ¢* (B sinh 2a -+ asinh 2),
whence

M‘L _m <,8 sinh 2a 4 asin 2,8)‘"’

wret T2 T

Sy <B sinh 2a + asin 2 ,8)5

uTe ol

\

Bsinh 2a + asin 2 . . v
M ) tor the various sections are easily found.

w

The values of <

VOL. CXCILL-——A. 2 U
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TaBLE of ( Bsinh 22 + «sin 28 >

s
| | i . -

B = 6. /4. /3. /2.
a= mf6 3526 1790 5608 6247
a= nf3 9551 1'5350 16216 19993
w= 72 23578 53872 112826 TTu
w=27[3 | 60713 89076 11565 16482

|

whence we obtain the following table giving us M/M;:—-

B = /6. Add s /.

|
a = =/6 8756 8644 8208 7628
2= 3 6116 w19 o 7663
= w2 1443 5925 onon 5711
4= 2nf3 399 4590 1551

When we look at this table, we observe immediately that the torsional rigidity
decreases, compared with the torsional rigidity of the circular section, as we increase
a, that is to say, as we decrease the thickness of the neck with regard to the other
linear dimension. This indeed might have been expected, for it is clear that such a
process must weaken the rigidity enormously, inasmuch as it tends to render the two
halves of the section independent of each other.

When o = 7/6, 8= u/6, the ratio M/M, is greatest. In this case the section does
not deviate very much from a square. (For very small values of « and 8 the section
is, of course, a rectangle.) This result shows us therefore that, so far as torsional
rigidity is concerned, the square is a more efficient form of section than any one of
those dealt with in the present paragraph.

That the circle is a more efficient type of section for rigidity is quite evident from
the table, since all the values in it are less than unity.

It may be interesting to note what are the values of M/M, for the full ellipse.
When we use the values given by SAINT-VENANT in his memoir on torsion

- prmath? ) prmwah?
= (;‘Tb—‘z and MO - *‘7“,
M 2ab

o e == tanh Ze, i 0/a == tanh «.
M, &+ b o /
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Hence we have, for the full ellipse

-
|
|

% a = 77‘/6. i a = 77'/3. { a = 77'/2. a = 277/3.
%

M/M, | 7807

9701 I 9963 9995

If we compare this with the previous table, we see that for the flattest ellipse,
o == 7/6, the ratio of the torsional rigidity to the torsional rigidity of the circular
section of equal area, which I propose to call for brevity the relative torsional rigidity,
is greater for the truncated than for the full ellipse, except in the last case, 8 = /2.
This last must necessarily be, since the strength of the section should be reduced by
cutting two slits into it along the major axis. For the higher values of a we see
that the relative torsional rigidity is always greater for the full than for the
truncated ellipse.

§ 11. Values of the Stresses at the Points of Symmetry.

Passing now to the values of the stress, the values of Sy/urc are given, for the
sixteen symmetrical sections, in the table below.

TABLE of Sy/urc.

B = /6. B = w4, Bo= =3 o= /2
o= =/6 7594 ‘8421 8949 @0
a = a3 1-1482 1-673b 22690 o)
o= /2 1-3084 2-2798 36780 o
a = 27/3 1-3897 27955 52484 )

The values of S,/urc were only calculated for 8 = /6 and 8 = /4, it being clear
that for the given values of a, S, would be less than Sy for 8= #/3. The values of
Sa/(urc) are given in the following table :—

TABLE of S,/urc.

B = /6. /4.
o= u/6 6736 8126
o = 77/7 ‘8394 1:0975
a = w2 11971 15176
% = 273 18987 23650
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The values of S, /ure, as caleulated from the formula (21) above, actually turn out
to be negative. The sign is, however, of no importance.

Several important results are seen to follow at once from these tables.

In the first place, when a keyway cut into a shaft of elliptic cross-section reduces
to a mere slit, the stress at the inner extremity of the keyway is seen to be infinite,
although this keyway is the limit of a single continuous curve and not of two curves
making a sharp angle, as 1s the case for a slit along a radius of a circle, obtained as
the limit of a keyway of the shape of a sector of the circle.

Such slits are thus bound to produce rupture or plastic flow of the material at
their deepest points, whatever be the manner in which we approximate to them in
practice.

The second point of importance, which these tables bring out clearly, is that the
maximum strain and stress do not always occur, as most of the results obtained by
pE SAINT-VENANT would lead one to suppose, and as THomsoN and Tarr (‘ Natural
Philosophy,” vol. 1, Part 1., §710), and BoussmvesQ (‘Journal de Mathématiques,
Série 1L, vol. 16, p. 200) assumed, at the point of the boundary nearest the centre.

Indeed Saint-VeNANT himself, in his edition of NAvVIER'S ‘ Lecons de Mécanique’
(§ 33, p. 313), has given an example to the contrary, and it happens that the section
dealt with in this example is closely analogous to the sections of fig. 2 in this paper.
The shape of the section is reproduced in fig. 11 (p. 342), from SAINT-VENANT'S ¢ Legons
de Navier.” He calls it a “ section en double spatule analogue @ celle d'un rail de
chenven de fer””  He gives two numerical examples in which the ratio of breadth to
length of the section is ‘20 and 14, corresponding for our sections, when B8 = /6, to
w == 1647 and o = 1985 respectively. IHe finds in these two cases that the fail-
points are not at the point of symmetry on the contour which is closest to the centre,
but at points on the contour at a distance from the axis of symmetry of 46 and *52
of the half-length respectively.

Now it 1s easy to see from the tables above that the result which one would expect
according to the ordinary rule, namely Sy > S,, does hold in fifteen out of the sixteen
cases, but there is one exception in the case of the section a = 27/3, B = m/6, when
the greater of the two stresses i1s found to oceur at A, the point further from the
centre.

I was much struck at fivst by this apparently solitary deviation from the rule, and
was inelined to ascribe it to some error in the arithmetic.

In order to test this, I caleulated the values of 5, and S, for the neighbouring
section, 8 = 7/6, @ = 3w/4. 1 found

S, A
A= 944833, b= o104144,
JTC ST

confirming the previous exception.
I then took the expressions (21) and (22) for S, and Sy, and tried to determine the
limits to which they tended, when « was made very great.
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Clearly, when we look at the second of expressions (22), we see that the second
term must ultimately become vanishingly small, provided #e/28 > 24, or 8 < /4.
For such values of B, then, S; tends to the definite limit prc tan 28 cos B, t.e., for

= /6, Sy/urc tends to the limit 15 for large values of .

For values of 8 > w/4 it would seem that S; increases numerically to an indefinite
extent.

Consider now the second expression for S,. Clearly, if « exceed a certain value,

tanh Z?«Lj——i—“ approximates so closely to unity that we may replace it in the series by

G)B
unity, and the error will only be a small fraction of the series itself. We then find

Sy . ) 88 (cosh 2a + cos 28) 2 (— 1)
e tends to sinh a (sec 28 — 1) o o X 4 1) - 168

when o 1s large.

Substituting 8 = #/6, and using the Euler-Maclaurin sum-formula to caleulate the
series, I find

8 . 12 h 2
<_A-> =: ginh & — —~ (cosh 3 + 3) (190086),
UTC) g T cosh «
alarge
and remembering that
h 2 + 1 1
CoSh 2%+ ¥ 96osh ot — -~ = 2 cosh a, if o large,
cosh « 2 cosh a
1

sinh oL == COSh Ol = T e COSh o lf o lar (§]
cosh a 4 sinh « ’ ge,

we see that, when a is large,
Sa ;
& = — cosh o (*452147),
MTC ] g=nl6

and, therefore, increases numerically indefinitely.

On the other hand, if « be very small, we get a flat section, A being now the point
nearest to the centre. Looking at expressions (21) and (22) we see easily that

-
(~i‘—> tends to — 2a
,U/TC

and

5 =] —_— ]_ 72
<;/«70> to (1 — sech 2a) sin B + - a cos B3 (9(71 : )1>9 ’

or, neglecting squares of a compared with the first power,

_S_B_ -];(3 0 (__ 1)n
<,wrc>,, onall T o cos B Z (2)7 + 1) )

(= 1y
Now % (2n + 1)
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16 . . .
and —- cos B being always < 2, S, is always numerically greater than Sy for small
=

values of . This confirms the usual rule, which we should expect, since the section
approximates in this case to a flat rectangular section.

§ 12. Discussion of the Variations in these Stresses.

The variations in the stresses S,, Sg are shown in fig. 9 (p. 340). This figure gives,
not the values of the stresses themselves, but the ratio of the stresses to the maximum
stress S, in the circular section of equal area. This ratio is plotted as ordinate to the
various values of a as abscissee. Of course, S,, as given by the expressions (21)
being negative throughout, the curve shows the ratio (— 5,/S,) and not S,/S,.

The diagram is comparatively rough, especially near the origin, owing to the very
limited number of points which I could calculate. The value of B selected was

= 7/6.
¢ Whén o is small, it is not difficult to show that, for 8 = #/6
Sp/Se = 1799 X /a, Sa/S =, — 2563 X v/,
and when « is large
Sp/S, = 5'196e7°, Sa/Sg = — 7831.

These last enable us to see the form of the curves near the origin and at a great
distance from it. They are perpendicular to the axis of @ at the origin, and at first
the curve of Sy lies below that of S,. At some point between & = 0 and « ="5 they
cross. This corresponds to the case of the square for rectangular cross-sections. S,
is now less than Sg, but instead of its remaining so, as we should have expected, the
curves cross again near the value of w = 17. The curve of S,/S, now tends to
become practically a straight line parallel to the axis, at a distance -7831 from it, and
the curve of Sg/S, approaches the axis asymptotically.

The values of S,/S,, Sg/S, are given in the tables below.

TasLe of S,/S..

B = /6. B = /4.
@ = w6 11334 141741
o =73 ‘8589 9506
- 7796 8246
o = (3 7706 7924
2 = 3ajd 7794
o = 7831



http://rsta.royalsocietypublishing.org/

A
/A A
a

A

THE ROYAL |
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1\

[~y

/J
A

\

P

/N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TORSION OF CERTAIN FORMS OF SHAFTING. 335

© TABLE of Ss/Se.

B = =/G. B = /4. B ==/3.
@ = 7[6 1:2790 1:2168 1:1950
o= n/3 1:1749 14494 17819
@ = 7|2 8521 1-2388 17773
@ = 273 5640 9366 1:2928
@ = 3n/4 4490

§ 13. Investigation of the Fail-Points other than the Points of Symmetry.

The question now arises, are A and B really points of maximum slide, and therefore
shear? Assuming that the fail-points do occur on the contour, are we sure that
there are not other points on the boundary where greater maxima occur, and may we
not be in presence of a case like that of SAINT-VENANT'S section en double spatule,

To see whether this is so, it is necessary to go at some length into the equations
determining the maximum stress.

Consider first the sides of the section y = + B. It is clear that the resultant
stress along this side will be simply the component parallel to the contour, since the
normal component must vanish in virtue of the boundary conditions. Calling S this
resultant stress, we find easily

8 =5 C% + Lretsin «zn) :
where
J =  (cosh 2¢€ 4+ cos 27).

8

\ M/

Hence we have to make

a maximum with regard to &
We have therefore

AL o T
cl’g‘(J {d’é + dre s1n2,8}>_0,
that is

L(@/ 12 i ¢ dw LAy fdw e —
7 \ag + g7¢® sin Z,B> [2 ie T T aE <d$ 4+ 47¢* sin 28 )| = 0,

Take now the second value of w as given by (17), and we get
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- d 1 dJ /d - : y L .
2 22 < e 4+ L 7c®sin 2,8) = 7¢” ginh 2§ tan 28 — 8r¢” (cosh 2a -+ cos 23)

dg " J dE\dg
r ‘)7/L~—l\-l7r§
o n;wl 2n+ 1w sinh 28
- I - 2l 2
n=0 | 2n + 1P 7* — 1683 th—i—lvm
L cosh == 0
1 Zn+ 17k
28 sinh 2§ oS g g L
" cosh 2E + cos 28 '
“““““ _: + 17T0£ l
%0 F 1Pm — 1687] cosh
Hence the equation giving the maxima and minima is
tan 2Bsinh 2¢
ST
sinh Zn + 1mg
(bOSh 2a 4 cos 28) (cosh 28 + 2 cos 28) "= (20 + 1) 28
9, 2 2
cosh 2§ + cos 28 "t ( 7+ 1) 7 — 168 . Zﬁwa
cosn —EB“"—

. LT
sinh [2n -+ 17 — 43]

TG e i [ 5h gp

sinh [2/1,-} 1o -+ 48] E

2(cosh 2a + cos28) 7P 28
@n+ 1)m + 48

cosh2E+cos 28 oo

Now it 1s clear that since 8% is zero, and
therefore a minimum at € = «, if it be not a maximum at & = 0, then there must be
a maximum somewhere between & = 0 and § = «.

To find whether € = 0 is a maximum or not, we have to investigate the sign of

B fdw 2>“ |
ldf { T {df -4 $r¢” sin 2,8} /-L: ;

u.e., we have to investigate the sign ot

One root of this equation is &=

THE ROYAL /
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1 /dw . \ d ‘diw
iy e 1n . e
3 < + 47¢* sin 2,8) i [2

ag dg

all the other terms vanishing when & = 0.

d
Now -< o

3
sign of
dg clf

and therefore ultimately the sign of

L dJ ( dw \
5 ag\ag + 4r¢*sin 2,8)}

+ Lrc?sin ZB> being always positive, we have to investigate the

d d*w 1 dd /dw e ok B
[2 aE T (Z§< 4 $7¢” sin Z,li)] when & = 0,
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P
E = Btan 28 (cosh 2 + cos 2B8) (1 + 2cos 2B) 5> (2n + 1)=® sech 2n + lra
= ptah = 1 + cos 2B n=o0 (2n+ 1ym* — 164 28
] T ’
9osh 20 - c%g@ n=o sech 2n + 1mra )
1+ cos2B oo 00t 38

I may remark here that all these differentiations are permissible, provided that &
be less than « by a fintte amount, however small, the series being then uniformly
convergent. We may not, therefore, make « actually zero in the last expression.
If, however, a is small but finite, then it is easy to see that E must be negative if
B < w/4. Also if B < n/4, E algebraically increases continuously, until for a certain
value o, of a it reaches the value zero. For all higher values of « it remains steadily
positive.

§14. Critecal Values of o and B.

It follows, therefore, that in all sections for which 8 < /4, the maximum stress
along the sides » = 4 B occurs at the point B, until a certain critical value, & = «,,
is reached, when the stress at B becomes a minimum, and we now have two points of
maximum stress on either side of B.

When 8 = w/4, E is apparently infinite, but it really tends to a finite limit. If
we put 8 = /4 — e where e will ultimately be made very small, and neglect terms in
e, €, &ec., we find that the expression becomes

T on=w TN ) W :‘w o
— — L — 2cosh 2o 3 sech2n+41 2a — cosh 2o 3 sech (21 4+ 1) 20 4+ L
Se 2 n=10 n =1 4

[y ¢ ,ng — _1 o ¢ i ,4‘::
— (cosh 2a + 2€) (1 4 2¢) < 5 Ze> i sech { 20 <.l + 7;-)}

— - :— - —ZA sech 2a 4 o tanh 2a — —z — 3 cosh Zai}:j sech (21 4 1) 2a.
When o is very great, this will ultimately be positive. Hence, bere also we shall have
a critical value .  This value, however, is easily seen to lie outside the values of o
taken in this paper.

I have not investigated so carefully the cases when 8 > /4, as, for the particular
sections selected, the maximum stress certainly occurs at B.

One point, however, is clear. When a is very large, the second and third terms
settle the sign of . The sign of these terms, again, is settled by the sign of the
leading terms. K is negative if

9

: ¢ < ™
. . L l+(1+ZCOSZIB)WZ_16BZ
is positive, r.e., if
‘ cos? B 1+ 2cos2B

18  — 168

VOL. CXCIIL-—A. 2 X

> 0.
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This will always be the case, provided 8 be greater than the root of the equation
28
= cos B.

This root 1s 53° 31" nearly.

Hence, for values of 8> 53° 31" the maximum stress always oceurs at the thinnest
point of the section. This is the case for the sections of fig. 4 with broad keyways,
for which 8 = 60°

Returning to the case of sections for which 8 < #/4 we have a, given by the
equation

e,

2+ Lora, ~
2 9 9 =00 “er A%
’)L -+ lvra0+ 168%(1 4 2cos28) sech - 28

Z

B tan 28 = (cosh 2a, -+ cos 28) i 2 2 sech 98 T os g >

o

ot w1682 |

Putting 8 = #/6 in this we have for the transcendental equation giving e, in this
case

16 ” 2 sech[2n+17 3,

;)%- = (cosh 20 + 3) [ 2 sech [2n 4 1] 30 - 7 = i (6n+ 1) (67H~o)]

Now, for fairly large values of «), we may neglect all terms in this summation
except the first. We then have
3 2 cosh 2e, -+ 1 23
e e —— T4y D q 4 ¢
5 \/3 1 5 i5 (sech e, + 2 sech 3u)

cosh 3¢,
whence I find o, = 1°225.
Hence for values of a greater than this the maximum occurs at certain points ou
the contour, given by previously obtained equation in &

§ 15. Calculation of the Position of Faul-Points and the Magnitude of the Maximum
Stress for the Sections B = w/6, a = w/2 and B = w6, & = 2m/3.

We have, therefore, if we wish to find the maximum stress for the sections @ = = 72
and « = 27/3 when 8 = m/6, to solve this transcendental equation :

77-\/5 sinh 2& (2 cosh 2& + 1) N 2n + 1 sinh (6n 4 3) &
6 2 cosh 24 + 1 (COSh 2¢ + 'l),,EO (62 + 1) (6n + 5) cosh (67 + 3)«
+ sinh (6n + 5) & | sinh (6n + 1) & 1
0 6n + 5 6w + 1 cosh (6n + 3)=«

which may be put into the slightly simpler form

/3 _12cosh e (2a+ 1) sinh (6n + 3) &
6 (cosh 2a + §) — sinh 3¢ ,Z, (6n + 1) (67 + 5) cosh (6n + 3) «
A 4 1 nE=® sinh (6n +5) & ~ sinh (6u+1)E
cosh £ sinh 3¢ =y | (62 + 5) cosh (6n+ 3)« (6n+1) cosh (6n-+3)ye [ °
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T find the roots of this to ke approximately given by
& = 1475 when a = 27/3,
&= 821 when a = #/2.

The corresponding values of S/urc are found to be 2°1084 and 1°4041 respectively.
Comparing these with the values of S,/ure given on p. 331, we see that the values of the
stresses corresponding to the maximum on the broad side are the greater, and hence
we have really a case absolutely analogous to SAINT-VENANTS section en double
spatule, with four fail-points symmetrically distributed, all of them lying on the broad
sides of the contour.

§ 16. Case where a s made very great.

It is interesting to see to what limit the fail-points tend, when « is made very
great. We have

5 = = i + tan 28 (cosh 2€ + cos 2,8) ﬁwf |
pre  A/J ! 2 . cos B \
|~ 88 (cosh 2a + cos 23) 2 e f .
- {:(272 1)’m® — 16,82} cosh 2t lma !
B 28 |
1
Replace now & tan 28 by its equivalent 88 7120 0 T 1P = 164
[r cosh 2n ;1—73.5 }[
{ (cosh 2 + cos 28) — (cosh 2 + cos 283) ____«_;\Ji_ S
| (3()<;l1g n+ Lo ]
_s_ s a L %)
RV (2n + 137 — 168

Now if & a be great, we have cosh = } (exp.) approximately. Hence, if we
suppose & = a — 0 where 6 is finite, so that we are dealing with points whose
distances from the centre bear a finite ratio to the dimensions of the section, we find

- _ (1 2n+17r)
S gges L

uTe "0 m+ 1'° 2 16[3’;

- terms negligible in comparison and ultimately vanishingly small when « is made
infinite.
Hence we have to make

QEO (2n + 1Pm*— 1642

a maximum.
Differentiating, the series being absolutely and uniformly convergent, we get
2 X 2
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T+ 1 @+
" 1 =00 (2%2_;,1'"‘ - 1> 60 (1~ 28 )
e’ 3 _ \ _o,

nmo (20 + 1) — 168> 5, (2n 4 1) — 16432
e,
tan 28 _ *5° (0 + Dm — 28 o (3-0107)

87 T =0 (2‘77/ - ])27;'2 . ]6‘82 °

This 18 the equation giving . When we put in it 8 = /6

n=n a9
Sn+ 1 —(6n+1.0

LT s
1603 7,50 (62 + 1) (6n + 5) 7 )

I find from this 6 = *577 approximately, and the corresponding value of
S/ure = '48984 cosh a. Referring to the value of S,/urc given on p. 333, we see that
the real fail-point is on the broader side.

The curve of true maximum stress S/S, is shown also in fig. 9. Tt joins on to the

Fig. 9.
20
— Y= S5/5,
wwwwwwwwwwwwww Y= '54/50
Bt SLE 5 5’/80
- \\__,_
5 225 1 > 3 P 5

Axis of o¢
Showing the variation in the value of S/Sy as « inereases, at the three points A, B, F, of Fig. 2.
' B = const. = /6.

curve of Sy/S, at the point corresponding to the value & = 1-225. It then remains
above the curve of 8,/S,, tending ultimately to a straight line parallel to the axis, at

a height '8484 above it.

§ 17. Proof that there can be no other Maxima,

Tt remains to show that the point n = 0 corresponds to a maximum along the side
& = a, and also that there is no maximum of the resultant stress inside the section,
=a,

The stress S along € = o is given by

a 2 g e \ 2
(_Sf) — Vlf (‘,;7’39 — L3¢ gsinh 2a>
J \dg 7 /=

\
\
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The equation giving the maxima or minima is found as before. It is

d*w 1 dJ /dw .
ww e 1 —
[2 it " 3 dn < iy BT sinh 2a>]£:a 0,

or, using the first of expressions (17) for w

., @2n 4+ Dmy
ne S 2 2n+ Dm
sin 279 tanh 2 8 (cosh 2 cos 2 : L
in 2y tanh 2o + 8 (cosh 2u 4 cos 28) % N o 4 16
cosh ~———ps——L
2a
T
y 2t dmn
+ 162 sin 2y (cosh 2 + cos 28) 5> " % 1 —~ 0
cosh 2« + cos 29 azo (204 1% 4 164 ol 27’;;\173
%

The left-hand side is always positive. Hence there is no root except n = 0, and
that corresponds to a maximum,
That no absolute maxemum can exist inside the section can be proved as follows :—

We have
502/# = dw/dx — Ty, 3;2/,4, = dw/dy + 7.

~ ~
Suppose at any point P inside the section S* = az® 4 y2° is a maximum. The

above forms for 2z + 374 being independent of axes, let us take for axes of @ and y the
direction of the resultant stress across the section at P and the perpendicular to it.

So that 7z = 0 at P.

~~~ ~~ . .
Consider a near point P, Let 27/, 42’ be the stresses at P’.  Then, since 8% is a
maximum at P,

T2~ e g o
x> a4yl

but
yz" > 0.
Therefore
b > x?y
~~ . . 3
or xz 1s a numerical maximum.
But since

d*w/dx* 4 dPw/dy® = 0,
therefore also

@) _ o

,,,,, S +

da? daf?

and it is well known that no function can have an absolute maximum or an absolute
minimum inside a region where it satisfies LaPLAcE'S equation. This is in fact a
particular case of the general theorem that a potential cannot have a maximum in
free space.
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Hence we have proved that the only fail-points are those which we have already
investigated.

§18. Deductions from the above and Criticism of BoUSSINESQ'S Proof of the
Position of Faul-Points.

Thus we see the study of these symmetrical sections is extremely instructive as
regards the position of the fail-points. They show us the connection between the
rectangular section and the section with a neck, and they give us the limiting cases,
when the four fail-points coalesce into two, and wice versd. The four fail-points
begin to occur after the ratio of the long to the short axis of the section exceeds a
certain value, which depends upon the angle of the bounding hyperbolas. As the
indented appearance of the section becomes more obvious, that is, as B8 increases, this
limiting value becomes greater and greater until, when the angle between the
asymptotes is less than 73° the fail-point is always at the vertex of the hyperbolas.
But in no case are the fail-points on the convex sides of the sections, unless the ellipses
are so flat that the points A are nearer to the centre than the points B.

M. BoussiNusq has given (‘ Journal de Mathématiques,” Série 1I., vol. 16, p. 200)
a sketch of a proof that the fail-points must be sought for ““sur les petits diametres

Fig. 10. Fig. 11.

A C;’/%

]

ﬁ kﬂj
U

des sections.” As this statement is in opposition with the results of the present
paper and with pr SAINT-VENANT'S results for the rail sections already mentioned, 1
venture to suggest that M. BoussiNmsQ's reasoning hardly holds in the case of
sections part of whose contour is convex and part concave, for the following reason.
The problem of torsion is mathematically analogous to that of a cylindrical vortex of
uniform strength, whose cross-section is that of the shaft considered. The motion
heing in two dimensions we have a stream function ¥, and the resultant stress at any
point in the torsion problem is the same as dy/dn in the hydrodynamical analogy, dn
heing an element of the normal to any stream-line.

Now if we draw the stream-lines for equidistant values of ¢, they will, says
M. Boussivusq, “reproduce the rregularities of the contour, but more and more
faintly, so that the curves are spaced at greater intervals along the large, then along
the small diameters.” TIn consequence, dyi/dn, or the stress, is greater in the latter
case. The above argument assumes that the same number of stream-lines cross each
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diameter. This will undoubtedly be the case, and M. BoussinesQ’s proof will hold, if
the boundary of the section be everywhere convex, for then it is evident that each
stream-line will consist of a single simple oval (fig. 10). But when we deal with
sections like those of the present paper it is by no means so clear that this will be
the case. There may be stream-lines which consist of two separate ovals (see fig. 11),
and it then becomes very much open to question towards which part of the section
the lines will be most crowded. In fact in some cases, as we have seen, this will
occur at intermediate points, F (fig. 11), and in other cases the narrowness of the
neck or the sharpness of the bend will counterbalance the limited number of the
stream-lines through the neck, and the fail-points will be at B, B.

§ 19. Comparison with SAINT-VENANTS Results. “ Efficiency” of the various
Sections.

When we compare the results given by these sections bounded by confocal ellipses
and hyperbolas with those given by pE SaiNT-VENANT in his edition of the  Lecons
de Naviur’ for the “sections en double spatule,” we find very good agreement. Thus
the critical value of the ratio of breadth of neck to length for which the fail-points
split up each into two is given by SAINT-VENANT as *3247.  For the sections of this
paper, when 8 = «/6, I find this critical value to be '3215.

The following ave the principal numerical points (see ‘ Legons de NAVIER, p. 865) :—

o e . SAINT-VENANT’S section,
Section «==/2, B= /6. /b= 20.
Ratio of breadth of neck to Iength o 2173 20
M/M, ... Coe e 4443 *3921
;S/SO (S being maximum stress‘) o ‘9144 ‘8668
(M/Mo)/(S/SO) . 4859 4524
Rd,tlo of distance of fail-points from bh()lb axis
to length of longer semi-axis. . . . . .| ‘5449 4561
Section a=2r/3, B= /0. SMNT’V%N,{A.TTJS section,
el =14,
Ratio of br eadth of neck to length oo ‘1250 ‘14
M/M, . . . . o *3955 3465
b/SO e 8557 8226
4622 4212
Ratlo of distance of fcul—pombs from short a axis
to length of longer semi-axis. . . . . . +4486 523

On the whole the sections of the present paper appear the more useful, M/M, and
the quantity K Dbeing greater than for pm SAINT-VENANTS rail sections. This
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quantity E T propose to call the “efliciency” or ¢ usefulness” of the shaft. 1t is
equal to (S,/M,)/(S/M), and gives us the ratio of maximum stress to torsional rigidity,
compared with the same ratio for the circle of equal area, that is, it gives us a
measure of how much torsion we may put into the shaft without impairing its
elasticity. Thus if M be the maximum torsion moment which the given shaft will
bear without failure of elasticity, M, the maximum torsion moment which the shaft
of equal circular section (made of the same material) will stand, then the corre-
sponding stresses, S, S, are each equal to the limiting elastic stress of the material
and

M/M, = efficiency = E,

or the limiting torsion moment of a shaft of any section is obtained from that of the
circular section of the same area by merely multiplying by the “efliciency ” as thus

defined.

Tasre of “ Efficiency” of the sixteen given sections.

B=x/6. B=n/4. p=r/3. B==/2.
o= 7/6 6846 7104 6869 0
a= =/3 5206 5022 4376 0
a= 72 4859 4218 3211 0
=273 4622 4643 *3550 0

A glance at the above suffices to show that the efficiency of these sections is, in
general, about one-half, that is, on the whole, this form of shaft is about half as useful
as the shaft of circular section. The zevo efficiency in the case of the slit (8 = n/2)
is due to the infinite stress in the keyway. t

§ 20. Analysis for the Sections bounded by one Elliptic and one Hyperbolic Are.
I now pass on' to the consideration of cross-sections, bounded by an ellipse and a
single branch of a confocal hyperbola. Such sections are shown in figs. 6-8.

Tu this case we shall find it more convenient to define £ and % by the equations

x = ¢ cosh £cos

y = c¢sinh £ siny

where —a < § < +a, 0 <9 < B.
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We find in the same way as before
dw/d € + Lw/dy* = 0.

dw/dé 4 § 1¢*sin 2y = 0 E=+a 0<y<f
dwldy + L 7¢* 2 sinh 2€ = 0 =8 —a<é< ta

There is, however, in the present case, a further condition. For, referring to
figs. 6-8, when we cross the line SB/B,, S being that focus of the conics which is
inside the section, 7 is continuous, passing through the value 0, but § is discontinuous
and changes from positive to negative. We have to ensure that the function of
& and %, which shall represent w, shall be continuous in crossing » = 0, and that its
space-differential coefficients shall also be continuous. The lattel condition implies
that duw/dy must change sign ; this being so, all the conditions will be satisfied,
Let us write '
2 sinh 2€ sin 2y

1

W= - 4TC wy,

cosh 2z

conditions (24) then become

dw/dé =0 when =42 0<n<B

e, o cos 28 .
o 1.2 _— — 25).
dn T e <1 cosh 2:4> sinh 2¢= 0 Foo (25)
when n—f —a<f<tn)
If we now assume *
n=w Ontlmy . Omtlx
w, = 3 A, sinh 7?“" ™ . sin 7 e,

=0 " Qu

then the conditions of continuity and the first of (25) are identically satisfied.
A, is found from the second equation of (25) in the same way as in § 4.

 167¢%2 (— 1) (cosh 24 — cos 28)

A== |
m(2n 4+ 1) [7* (2n + 1)* + 164*] cosh i@j‘ifﬂ'ﬁ
And thus
_ 1. 28mh2Esin2y 2, 2 - 5
w= — {7¢* cosh 22 167¢%a* (cosh 2o — cos 28)
S+ 1 In+1
pee (= ysinn L gy 2t Lk
X 3 = - . (26).
™ O 4 1)m [ (20 + 1) + 164 cosh 2”+}”ﬁ

VOL. CXCITL—A, 2y
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The shears are given by the equations

~ )
e ;} <smh & cos 77 1 — cosh £siny i_» — 7csinh £sin 9 (1 + sech 2a) |
b E ~ (27),
7/’: = jl (cosh Esin 77 E + sinh € cos 77 d > + ¢ cosh £ cos (1 — sech 2"‘))'

where J now stands for the quantity

2 &2 S h2 & el
cosh® & sin® 9 4 sinh?® € cos® 7.

The torsion moment M
N A~
= H(TW — yaz) die dy

= prc’ f dn f d§ {cosh® £ cos” y (1 — sech 2a) + sinh® Esin® 9 (1 4 sech 2a)} J

B (e Tw,
4+ &5—.(0 dn§ df(str, TN 4 sin h2§” )

= I dy r dfi (cosh 4& — cos 479) — sech 2a (cosh 2§ — cos 27) ‘
i — sech 2a (cosh 4&cos 2y — cosh 2§ cos 4y) ’

+ M; ﬁ IAwIT sin 29 dn + ¥ L [w{]i sinh 2€ d¢&.

[ -4

When this is integrated out and reduced as before, it is found that

M= pret (Bsinh 4 —~ e sin 48) tanh® 2a )
16 .
+ 2 sin 28 (2a sech® 22 — tanh 2a) (cosh 2a — cos 28) l
J ~ - (28
,”_ 1 t nh ?‘_n_j‘_)lzé | ( )
-3
— 2048a* (cosh 2 ~ cos 28)* = 2 @) [ T 16T |

§ 21, Aiternative Solution for these Sections.

For this type of section also we can find an alternative solution.

Suppose we assume
, sinh 2£sin 29

— e L 2 =1
w= —frc’ s w,.
These conditions (24) reduce to :
(TR cosh 2a
T + L7 &.111277<1 cos2,3> 0, {=H4a 0<n<pB . (29).

dwfdy =0 n=8 —a<é<a

Also the condition of continuity requires that w, must be odd in »,
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We assume, therefore,
Y o
w, = 3 A, sin -, " sinh o
. LT g 28

But since

: . wd . 2uglmf

sin 260 = @, sin ;é + ...+ a,smm w;gézr‘, + ..

where
(— 1)"16Bcos 28
(2n + 1) 7 — 168"

a, =

we find easily from the first equation of (29), comparing coefticients

A= (= 1)* 167¢°8* (cosh 22 — cos 23) )

@n + D [20 + 127 — 168%] cosh

2n -+ lore

B

and

= e 1 g2 S ZE I SN
W= = e R
o+ St imk
n=se sin An—;-gmy sinh =" 5 T
+167¢°8*(cosh 2o —cos 28) = ( — 1) ! B ———— (30).
n=0 [
(24 1ym[Zn F T — 1687 cosh @—%’E‘
The stresses and torsion moment are deduced without difficulty. They are :
izcz _ . . . , (cosh 2a — cos 23)
P sinh €siny (1 + sec 28) + 327¢B (cosh 28 — cos 29)
- (Sinh Ecosy 7(- — cosh £siny %) (— 1)*sin ?37'{;' LU JER Zn—;- 1§
X ¥ 9t n 2B B . (31)
n=0 G 3
on + 1w [2n + 1P 7 —168% cosh 2217

~

K/ . 30 c'd — 2
LLJ = 7c cosh £ cosn (1 — sec 2B) + 327¢B° (cosh 2 — cos 2)

(cosh 2& — cos 27)

PO TS
20+ 1wy sinh 2n+1mE

cosh Esin g @ + sinh £ cos g a (— 1)*sin
d§ dn)

NE=00 2
X u§0 5’_\1 B ' (32)-
In + 1| [P0 + 127 — 168] cosh if;—éﬁ?‘
4 —
= £ | = (Bsinh 42 — asin 4B) tan® 28
-+ 2 sinh 2a (cosh 2a — cos 28) (28 sec® 28 — tan 23)
— (33).
. 2n 4 lra
new tanh —9g
— 4 Iy — \2 -
2048 B* (cosh 2a — cos 28) 750 PRI ey IRy

2Y 2
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The same remarks which were made concerning the solution in§ 5 apply here.
The critical values are 8 = #/4, 8 = 3x/4. The limits to which the values of w, M
and the stresses, given in (30)-(33), tend, are easily obtained if required. In practice,
however, the other solution would probably be used.

§ 22. Numerical Results.  Effects of Keyways upon Torsional Rigidity. N

I have worked out numerically six cases of this type of section. The sections
selected are shown in figs. 6-8. The bounding ellipses are « = /6 and « = /2, the
bounding hyperbolas are 8 = /2, 3a/4 and =, giving respectively (c) the half ellipse,
(D) the ellipse with a rectangular hyperbolic keyway, (¢) the ellipse with a single
thin keyway or slit.

The values of the torsion moment and of its ratio to the torsion moment of the.
equal circular section, are shown in the tables below.

TasrLe of M/urc'.

| /3——7‘/,.3 ; B:f}ﬂ-/;[.. E =7,
a=r/6 1365 | 3044 | 4731
" 10-354 | 26319 40142
| iv

B2, | B=3z/d. | B=m.
- ; !
o =7[6 8907 | 8244 7718 !
w=7/2 7907 ! 7985 7664 |

When we look at these results we see that the torsional rigidity of these sections
is always less than that of the circular section. The sections consisting of a complete
ellipse with one fine slit up to the focus are weaker than the half-ellipse or the
sections with a broad keyway. This is more particularly. shown in the case of the
more elongated ellipse, & = /6.

With regard to the effects of slits, or thin keyways, it is interesting to compare the
values of M/M, for the ellipses a = /6, o = m/2, when (i) there are no slits, (ii.)
there is one slit, (iil.) there are two slits
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We find

a = /6. & =572,

R 7807 9963
(11..). . 7718 7664
. . ;

L) MM, =
%i (iii.) 7628 5711

Tt follows that, in the first case, the cutting of one thin keyway lowers the rigidity
of the section by 114 per cent., and of two keyways by 229 per cent. Hence the
effect of two such keyways 1s slightly greater, if anything, than twice the effect of a
single keyway, in the case of the more elongated ellipse. The difference is, however,
practically negligible.

In the other case the result is different. The reduction of the torsional rigidity is
very great : it amounts to 2308 per cent. for one keyway and to 4268 per cent. for
two keyways. Here we see the effect of two keyways is rather less than twice the
effect of one.

We may infer, however, from these two results that we may in practice, without
very large error, if we have a number of keyways cut symmetrically into a section,
and we know the effect on the torsional rigidity of any single keyway, assume that

the effect of all the keyways is the sum of their separate effects.

Another important point which is brought out by the above results is that the
effect of such a keyway upon the torsional ngldlty is by no means simply proportional
to the depth of the keyway, but increases according to some much more rapid law.

Thus, for the ellipse & = 7/6, the depth of the keyway = ‘123 (semi-major axis).
For the ellipse o = /2, the depth = 601 (semi- -major axis). Thus, when the depth
of the keyway is only decreased to one-fifth of what it was before, the reduction of
torsional rigidity falls from 23 per cent. to 1 per cent., or nearly in the ratio of the
squares of the depths of the keyways.

This result may explain the fact that, when keyways of only moderate depth are
cut into shafts, the decrease of torsional rigidity is by no means so great as would
have been inferred from pDE SAINT-VENANTS results for a circular section, with a thin
keyway or slit extending right up to the centre.

If we suppose, which appears reasonable, that the effect of such a slit upon an
ellipse, which is not very elongated, does not differ much from the effect on a circle,
we see that a keyway, whose depth equals about one-eighth of the radius, will decrease
the torsional rigidity by only about 1 per cent.

Now, when we make o =oo, we get the case of the circle with a keyway going
right up to the centre. The reduction of torsional rigidity is then 44 per cent. about.
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Hence we have, roughly,

Depth of keyway in | Reduction of

B
i
i[ terms of radius. ’ torsional rigidity.
! T pel‘ cent.
I 1-00 44
| 60 23
! 12 1

If the reduction of torsional rigidity were simply proportional to the depth of the
keyway, the last two results ought to be 26°4 per cent. and 53 per cent. respectively.

It may be objected to these deductions that in the above sections, the fact that the
stress at the vertex of the keyway is infinite, violates the physical conditions assumed
by the theory of elasticity and renders our results untrustworthy.

My answer to this is that these cases should really be considered as limiting cases.
If, instead of considering a section where the keyway is actually a straight line, we
consider a hyperbola with a very sharp bend, we can easily ensure, provided the
angle of torsion be net too great, that the physical conditions shall not be violated,
and, on the other hand, the values of the torsional rigidity (since they tend to a finite
limit) will differ but little from the values obtained above. The very fact that the
torsional rigidity tends to a finite limit shows that, even in the extreme case, the area
where the physical considerations are violated is infinitesimal.

Finally, in drawing conclusions from such results we shall only be following the
example of SAINT-VENANT and of THoMsoN and TArr, who have not hesitated to use
results found in a precisely similar way for such keyways cut into a circle.

§23. Values of the Stresses.

I have also determined the stresses at three points on the boundary of the section,
in order to find where the stress was greatest. The points selected are denoted in
figs. 6, 7, and 8 by the letters A, B, C.

A is the vertex of the hyperbola, B is the point opposite to A, and C is the point
corresponding to n = 7/2, { =+

Aisgivenby é€=0, n=8, and Bby { = Fa, n=0.

If S,, Sg, Sq denote the coi‘responding stresses, I find

]

S
/ﬁ; = cos B (1 — sech 2a)

N 27L+ 17r,3
__ 8a(cosh 22 — cos 2B) r=2 (= 1) tanh 2o
sin B neo (20 + 1) 4 162°

= — tan 2B sin 8

/

sech === Int lma
88 (cosh 2a — cos 23) "2 T
Sin '8 ne=0 (2?71 -+ 1 )2W2 — 1 ()'Bl vt ‘ * ¢ °

4 (34),
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Sp .
= tanh 2a sinh a
St impB
y ST AR
8 (cosh 2x — cos 28) "=* sech =5~
sinh a a0 (20 + 177 + 1642
= — cosh a (sec 28 — 1)
9n+1
—1)* taph 22T 17T
+ 88 (cosh 2e — cos 28) =2 (—1)"tan 28 (35)
sinh « a0 2n 4 1162 0 ’
S .
—% = — sinh « (1 4 sech 2a)
/,LT(‘,
T T
cosh 2t lm / cosh 2nt1mf
n 8a (cosh 24 — cos 2B) "o» 7 da [ 2
cosh « 0 20+ 17 + 1642
= — sinh a (1 4 sec 2/3)
Yutln®, . Smil
B L n+lmra
— 8 (cosh 2 — cos 28) 37 (= 1) in =5 tanh —— 5 (36)
cosh « 20 2n + 1Pz — 16482 ot ’
whence I find—
TaBLE of Stresses.
B=m[2, B=3x/4. B=m
a=n/6 ~ 67631 85397 —
SA/,I(T(/'
- ~2:0716 36144 —w
a=m6 10265 12625
Sn/ltn(}
a=m/2 17276 2:0509
o=m/6 0 85106
S./ue
=2 0 22794

We see that the greatest of the three stresses occurs at A, 7.e., at the vertex of the
hyperbola, and it is probable that A is the true fail-point.
The following are the values of S,/S,, S, having the same meaning as in § 12 :—

TABLE of S,/S,.

E B=m/2. B=3n/4. B=m.
i |
| ] o
w=nl6 | 1-2101 11496 ”
|
amnf2 | 12192 1-6888 w
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The values of the “ efficiency " are easily obtained.

TasLe of X,

‘ | B=RR | p=E | pen
| - _— : !

| a=nf6 7361 7171 | 0
t — 6485 4728 i

I .

The above results do not need any detailed discussion. We see that in all cases
the maximum stress is greater than the maximum stress for the circular section.
Also the efficiency is always less than unity. If we compare these values of the
efficiency with those in § 19, we see that, on the whole, the rule holds that the more
compact the section the higher its efficiency. On the other hand, by indenting a
section we render it less efficient.

§ 24, Conclusion and Sumanary.

Looking back upon the results of the paper, we see that the study of these special
forms of cross-section sheds new light upon several little-explored parts of the theory
of elasticity.

Tt confirms to a great extent pE SAINT-VENANTS investigations concerning the
behaviour under torsion of a rail, or of shafts of similar section.

Owing to the great generality of the forms treated, it enables us to correlate the
results previously obtained for sections of various shapes, especially with regard to
the maximum stress. It shows us what type of cross-section will give us four fail-
points not at the points of the contour closest to the centre; within what limits we
may expect to find this exception to the ordinary rule; and in what manner this case
passes into others.

Again, with regard to the effect of keyways upon the torsional rigidity, the results
of the paper tell us that, without risk of sensible error, we may in practice, in order
to get the joint effect of two indefinitely thin keyways or slits, add the known effects
of each keyway, taken separately.

Further, these results bring the theory of elasticity into better accordance with
observed facts, by showing that the effects of keyways of moderate depth are
comparatively much smaller than would have been expected from the results for the
circle, '


http://rsta.royalsocietypublishing.org/

